Facile preparation of size-controlled gold nanoparticles using versatile and end-functionalized thioether polymer ligands.
نویسندگان
چکیده
At present, thiol ligands are generally used whenever the classical Brust-Schiffrin two-phase method is employed to prepare metal nanoparticles. In general, the previous research was mainly focused on utilizing small molecular thiol compounds or thiol polymers as the stabilizers in organic phase to obtain small sized and uniform gold nanoparticles (Au NPs). Such preparations are usually associated with the problems of ligand exchange on the nanoparticle's surface due to strong Au-thiol interaction. Herein, we report an approach to produce fairly uniform Au NPs with diameters about 2-6 nm using thioether end-functional polymer ligands (DDT-PVAc and PTMP-PVAc) as the capping agents. These nanoparticles are thoroughly characterized using DLS, TEM, UV-Vis spectroscopy and other complementary techniques. The results indicate that multidentate thioether polymeric ligands (PTMP-PVAc) lead to formation of smaller but special 'multimer' morphology in organic phase; whereas fairly uniform nanoparticles are produced using monodentate thioether functionalized ligands (DDT-PVAc). Further modification of such polymer ligands to introduce the hydrophilic functionalities realizes the phase transfer of Au NPs from organic to aqueous media.
منابع مشابه
Design and Utility of Metal/Metal Oxide Nanoparticles Mediated by Thioether End-Functionalized Polymeric Ligands
The past few decades have witnessed significant advances in the development of functionalized metal/metal oxide nanoparticles including those of inorganic noble metals and magnetic materials stabilized by various polymeric ligands. Recent applications of such functionalized nanoparticles, including those in bio-imaging, sensing, catalysis, drug delivery, and other biomedical applications have t...
متن کاملMediator-template assembly of nanoparticles.
The ability to construct size- and shape-controllable architectures using nanoparticles as building blocks is essential for the exploration of nanoparticle-structured properties. This paper reports findings of an investigation of a mediator-template strategy for the size-controllable assembly of nanoparticles. This strategy explores multidentate thioether ligands as molecular mediators and tetr...
متن کاملPolymer-functionalized gold nanoparticles as versatile sensing materials.
In this brief review, gold nanoparticles conjugated with functional polymers are described from the viewpoint of application to sensing materials. The optical properties of gold nanoparticles, the synthesis of polymer-functionalized gold nanoparticles, and their analytical applications are discussed. Polymer-functionalized gold nanoparticles are categorized into two classes: biopolymer-conjugat...
متن کاملPreparation of Magnetic Iron Oxide Nanoparticles (MIONs) with Improved Saturation Magnetization Using Multifunctional Polymer Ligand
This paper describes the preparation of ultra-small magnetic iron oxide (Fe3O4) nanoparticles (MIONs) coated with water-soluble thioether end-functionalized polymer ligand pentaerythritol tetrakis 3-mercaptopropionate-polymethacrylic acid (PTMP-PMAA). The MIONs were prepared by co-precipitation of aqueous iron precursor solution at a high temperature. The polymer modified MIONs were characteriz...
متن کاملFacile preparation of silver nanoparticles and antibacterial Chitosan-Ag polymeric nanocomposites
Silver nanostructures as an effective antibacterial materials were synthesized via three various hydrothermal, sono-chemical and microwave methods using water as a green solvent. Then Chitosan-Ag polymer based nanocomposites were made by a fast chemical procedure. The influence of power, temperature and time on the morphology and particle size of the products was investigated. Scanning electron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2011